3.1396 \(\int \frac{x^7}{\sqrt{2+x^6}} \, dx\)

Optimal. Leaf size=186 \[ \frac{1}{5} x^2 \sqrt{x^6+2}-\frac{2\ 2^{5/6} \sqrt{2+\sqrt{3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{x^2+\sqrt [3]{2} \left (1-\sqrt{3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )}\right ),-7-4 \sqrt{3}\right )}{5 \sqrt [4]{3} \sqrt{\frac{x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \sqrt{x^6+2}} \]

[Out]

(x^2*Sqrt[2 + x^6])/5 - (2*2^(5/6)*Sqrt[2 + Sqrt[3]]*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/
3)*(1 + Sqrt[3]) + x^2)^2]*EllipticF[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)], -7 -
 4*Sqrt[3]])/(5*3^(1/4)*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sqrt[2 + x^6])

________________________________________________________________________________________

Rubi [A]  time = 0.128575, antiderivative size = 186, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {275, 321, 218} \[ \frac{1}{5} x^2 \sqrt{x^6+2}-\frac{2\ 2^{5/6} \sqrt{2+\sqrt{3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} F\left (\sin ^{-1}\left (\frac{x^2+\sqrt [3]{2} \left (1-\sqrt{3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )}\right )|-7-4 \sqrt{3}\right )}{5 \sqrt [4]{3} \sqrt{\frac{x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \sqrt{x^6+2}} \]

Antiderivative was successfully verified.

[In]

Int[x^7/Sqrt[2 + x^6],x]

[Out]

(x^2*Sqrt[2 + x^6])/5 - (2*2^(5/6)*Sqrt[2 + Sqrt[3]]*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/
3)*(1 + Sqrt[3]) + x^2)^2]*EllipticF[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)], -7 -
 4*Sqrt[3]])/(5*3^(1/4)*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sqrt[2 + x^6])

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{x^7}{\sqrt{2+x^6}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{2+x^3}} \, dx,x,x^2\right )\\ &=\frac{1}{5} x^2 \sqrt{2+x^6}-\frac{2}{5} \operatorname{Subst}\left (\int \frac{1}{\sqrt{2+x^3}} \, dx,x,x^2\right )\\ &=\frac{1}{5} x^2 \sqrt{2+x^6}-\frac{2\ 2^{5/6} \sqrt{2+\sqrt{3}} \left (\sqrt [3]{2}+x^2\right ) \sqrt{\frac{2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{2} \left (1-\sqrt{3}\right )+x^2}{\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2}\right )|-7-4 \sqrt{3}\right )}{5 \sqrt [4]{3} \sqrt{\frac{\sqrt [3]{2}+x^2}{\left (\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2\right )^2}} \sqrt{2+x^6}}\\ \end{align*}

Mathematica [C]  time = 0.0074339, size = 41, normalized size = 0.22 \[ \frac{1}{5} x^2 \left (\sqrt{x^6+2}-\sqrt{2} \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};-\frac{x^6}{2}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^7/Sqrt[2 + x^6],x]

[Out]

(x^2*(Sqrt[2 + x^6] - Sqrt[2]*Hypergeometric2F1[1/3, 1/2, 4/3, -x^6/2]))/5

________________________________________________________________________________________

Maple [C]  time = 0.031, size = 33, normalized size = 0.2 \begin{align*}{\frac{{x}^{2}}{5}\sqrt{{x}^{6}+2}}-{\frac{{x}^{2}\sqrt{2}}{5}{\mbox{$_2$F$_1$}({\frac{1}{3}},{\frac{1}{2}};\,{\frac{4}{3}};\,-{\frac{{x}^{6}}{2}})}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(x^6+2)^(1/2),x)

[Out]

1/5*x^2*(x^6+2)^(1/2)-1/5*2^(1/2)*x^2*hypergeom([1/3,1/2],[4/3],-1/2*x^6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{7}}{\sqrt{x^{6} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^6+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^7/sqrt(x^6 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{7}}{\sqrt{x^{6} + 2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^6+2)^(1/2),x, algorithm="fricas")

[Out]

integral(x^7/sqrt(x^6 + 2), x)

________________________________________________________________________________________

Sympy [A]  time = 0.735182, size = 36, normalized size = 0.19 \begin{align*} \frac{\sqrt{2} x^{8} \Gamma \left (\frac{4}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{4}{3} \\ \frac{7}{3} \end{matrix}\middle |{\frac{x^{6} e^{i \pi }}{2}} \right )}}{12 \Gamma \left (\frac{7}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(x**6+2)**(1/2),x)

[Out]

sqrt(2)*x**8*gamma(4/3)*hyper((1/2, 4/3), (7/3,), x**6*exp_polar(I*pi)/2)/(12*gamma(7/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{7}}{\sqrt{x^{6} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^6+2)^(1/2),x, algorithm="giac")

[Out]

integrate(x^7/sqrt(x^6 + 2), x)